logical add - traducción al árabe
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

logical add - traducción al árabe

Overlap-add Method; Overlap-add; Overlap add; Overlap-add method

logical add      
الإضافة المنطقية
negation         
OPERATION THAT TAKES A PROPOSITION P TO ANOTHER PROPOSITION "NOT P", WRITTEN ¬P, WHICH IS INTERPRETED INTUITIVELY AS BEING TRUE WHEN P IS FALSE, AND FALSE WHEN P IS TRUE; UNARY (SINGLE-ARGUMENT) LOGICAL CONNECTIVE
Logical not; Not (logic); ¬; Not sign; Negate; Logical NOT; ⌐; Negation sign; Logical negation; Negated; ¬; Logical Complement; Logical complement; Not operator; Logical Negation; ⌙; !vote; Logical opposite; Negation (mathematics); U+00AC; Negation (logic); Quantifier negation; Negation (logics); Negation elimination; ¬
إنكار نفى شئ غير موجود عدم وجود ، لا وجود عملية النفى .
NEGATION         
OPERATION THAT TAKES A PROPOSITION P TO ANOTHER PROPOSITION "NOT P", WRITTEN ¬P, WHICH IS INTERPRETED INTUITIVELY AS BEING TRUE WHEN P IS FALSE, AND FALSE WHEN P IS TRUE; UNARY (SINGLE-ARGUMENT) LOGICAL CONNECTIVE
Logical not; Not (logic); ¬; Not sign; Negate; Logical NOT; ⌐; Negation sign; Logical negation; Negated; ¬; Logical Complement; Logical complement; Not operator; Logical Negation; ⌙; !vote; Logical opposite; Negation (mathematics); U+00AC; Negation (logic); Quantifier negation; Negation (logics); Negation elimination; ¬

ألاسم

إنكار; رفض; إبطال; نفي; عدم; ِ وجود; نقيض

Definición

logical positivism
(also logical empiricism)
¦ noun a form of positivism which considers that the only meaningful philosophical problems are those which can be solved by logical analysis.

Wikipedia

Overlap–add method

In signal processing, the overlap–add method is an efficient way to evaluate the discrete convolution of a very long signal x [ n ] {\displaystyle x[n]} with a finite impulse response (FIR) filter h [ n ] {\displaystyle h[n]} :

where h[m] = 0 for m outside the region [1, M]. This article uses common abstract notations, such as y ( t ) = x ( t ) h ( t ) , {\textstyle y(t)=x(t)*h(t),} or y ( t ) = H { x ( t ) } , {\textstyle y(t)={\mathcal {H}}\{x(t)\},} in which it is understood that the functions should be thought of in their totality, rather than at specific instants t {\textstyle t} (see Convolution#Notation).

The concept is to divide the problem into multiple convolutions of h[n] with short segments of x [ n ] {\displaystyle x[n]} :

x k [ n ]     { x [ n + k L ] , n = 1 , 2 , , L 0 , otherwise , {\displaystyle x_{k}[n]\ \triangleq \ {\begin{cases}x[n+kL],&n=1,2,\ldots ,L\\0,&{\text{otherwise}},\end{cases}}}

where L is an arbitrary segment length. Then:

x [ n ] = k x k [ n k L ] , {\displaystyle x[n]=\sum _{k}x_{k}[n-kL],\,}

and y[n] can be written as a sum of short convolutions:

y [ n ] = ( k x k [ n k L ] ) h [ n ] = k ( x k [ n k L ] h [ n ] ) = k y k [ n k L ] , {\displaystyle {\begin{aligned}y[n]=\left(\sum _{k}x_{k}[n-kL]\right)*h[n]&=\sum _{k}\left(x_{k}[n-kL]*h[n]\right)\\&=\sum _{k}y_{k}[n-kL],\end{aligned}}}

where the linear convolution y k [ n ]     x k [ n ] h [ n ] {\displaystyle y_{k}[n]\ \triangleq \ x_{k}[n]*h[n]\,} is zero outside the region [1, L + M − 1]. And for any parameter N L + M 1 , {\displaystyle N\geq L+M-1,\,} it is equivalent to the N-point circular convolution of x k [ n ] {\displaystyle x_{k}[n]\,} with h [ n ] {\displaystyle h[n]\,} in the region [1, N].  The advantage is that the circular convolution can be computed more efficiently than linear convolution, according to the circular convolution theorem:

where:

  • DFTN and IDFTN refer to the Discrete Fourier transform and its inverse, evaluated over N discrete points, and
  • L is customarily chosen such that N = L+M-1 is an integer power-of-2, and the transforms are implemented with the FFT algorithm, for efficiency.